Sorting and Hardware Assisted Rendering for Volume Visualization

Clifford Stein
Barry Becker
Nelson Max

Lawrence Livermore National Laboratory
Livermore, CA 94551 U.S. A.

Abstract

We present some techniques for volume rendering unstructured data. Colors and
opacities areinterpolatedbetweerverticesusing hardware assistetgxture mapping.

We also present an O%hmethod for sortingn arbitrarily shapedconvexpolyhedra

prior to visualization. It generalizes the Newell, Newell and Sancha sort for polygons

to 3-D volume elements.
Introduction

This project grew outof the need to visualize
unstructured meshed vector fields such as those fiound
existing finite element modeling code. Sownmume
rendering applications do not require mot&an one
color. However,we havedevelopeda visualization tool
for renderingmulti-colored elements, such aslored
flow volumesin a vector field, usingnimplementation
of the Shirley-Tuchman [1] algorithm. While
monochromatic elements can lempositedin any
order as showby [2], data setgontainingmany colors
must becompositedn eithera back-to-front or front-to-
back order. Indeed, most volumenderingapplications
have color and opacity variations which require sorting.

This paper describes the visualization togé have
developedwhich can display a setf convex, non-
intersectingpolyhedra, with unique colomnd opacities
assigned to each vertex, usingrdwareassisted texture
mapping. It usesan implementationof the Shirley-
Tuchmanalgorithmto renderthe polyhedra once they
have been subdivided intdetrahedra. Rendering
coloredvolumesrequires compositing the elemeinsa
back to front order. Henceye presentan algorithm
that sorts thesaunstructuredelementsbefore they are
subdivided. The algorithm will correctly sort
unstructuredtopologies of convex polyhedrathat are
devoid of intersections and cyclically overlapping
polyhedra (see Figure 4).

Volume Rendering

We have developed a new volume rendering
approximationwhich takes advantagef the texture
mappingandcompositing available on modern graphics
workstations. This allows tetrahedrao be composited
by the projectedtetrahedraalgorithm of Shirley and

Tuchman,without artifacts due tdinear approximation
of the non-linear opacity effects.

The Shirley-Tuchmaalgorithmclassifies the projection
of eachtetrahedrorinto one to four cases consisting
one to fourtriangles. Figure 1 shows the two non-
degenerate cases, where no vertex projectsamdther
vertex or edge.

case (a) case (b)

Figure 1.

A tetrahedroncan project to thredrianglesasin case
(a), or fourtrianglesasin case (b). Each case has a
single "thick" vertex A; the other vertices on the profile
are called'thin". The thick vertex is the projecticof
the 3-D segment /A, where a viewing ray intersects
the tetrahedronin case (a), Ais A, andA, lies on the
face BCD. In case (b), Ais on edge BDandA, is on
edge CE.

Assume that the color ©(and extinction coefficient
1(X) vary linearly across théetrahedron. Then these
guantitiescan be interpolated acrofscesor edges to
give values,=1(A,), C=C(A), 1,=1(A)) andC,=C(A,)).
Shirley and Tuchmanshowthat the totalopacity a of
the segment g, is a =1-exp((1 +1,)/ 2), wherel

is thelengthof the ray segment A,. The opacity at
the profile vertices is zero. They approximate the color Then
at the thick vertex to be (C +C){ 2ve will improve t(x) =1-a,(X)
this. =1-(s+(1- 9exp(xh)
: : , =1-(1-9)exp(-l)
For eachtriangle,the colorand opacityare interpolated
linearly from the three vertex values to timerior,
usually along the edgesdthenacross scan lines, as
Gouraudshading. Thenthe interpolated color Cand
opacitya; arecompositecbver the old pixel color G, to
give the new color G, by the formula:
Crew =0,C; +(1-0,)G,y. Often thelinearinterpolation
and compositing steps can be performbyg special _ _a _ B 2
purpose hardware available in the rendering engines of a 09 =503 =1-exp(~t)+ 1= (exptT))”.
graphics workstation.

and similarly
t,(X) =1-a,(x) =1- sléxp(T) .

Thus

The projectedetrahedraalgorithmhas several artifacts
which produce incorrect colors, or Mach bands
revealing the subdivision intdetrahedra. The first
artifact comesfrom thelinear interpolationof the color
andopacityacross thdetrahedra. This interpolationis

not C across the facegnd can produce Mach bands,
particularly atfaceswhich areparallelto the viewing
direction and project to lines. The only cure fgher
orderinterpolation,which is not availablén hardware
on most workstations.

However, there is a more serious problem with the
algorithm, which occurs even when the color C and b)
extinction coefficient T are constant. The problem is

easiest tanderstandvhen the color is zero, gbatthe 0 | L
image showsan opacity cloud hiding the background, ! UL

and in 2-D, where thetetrahedrabecome triangles. A B c QD E F
Consider astrip of trianglesT,, T,, T,... of a constant

width | as shownn Figure 2(a), projected vertically to a
scanline. In triangleT,, C is the "thick" vertex, where

the opacity a = exp(-1l), anda=0 at BandD. Figure

2(b) is a graph of the transparertgfx) =1-a,(x) along

the scarline, which is used to multiply the background 0)
color during compositingof triangle T,. It is piecewise

linear, becausethe opacity a(x) has been linearly L
interpolated across the scan line segmentsaB€CD. I 1

Similarly, Figure 2(c) shows the transparertg{x) from A B C Q D E F
triangle T,. The final transparency along the segment

CD, resultingfrom compositing bottriangleson topof

the background is the produigk)=t,(X)t,(x), shown as

the quadraticpolynomial segmenaboveCD in Figure 1

2(d). d)

To derive the formof this quadratic polynomial, let

x=sD+(1-s)C be the point a fractiosof the way from C 0 1 L L1 | |

to D. T I T T

© A B C Q D E F
Figure 2

The transparency should actually be 1-ewtp(-so the
guadraticterm s(l-s)(exp(—TI))2 represents therror due
to approximating,(x) andt,(x) linearly.

Other similar quadratic segments come from other
projected diagonal edges, and the final intensity,
proportional to the transparency if the background is
uniform, is not C.L In three dimensions, the
correspondingeffect produces Mach bands along the
projections of edges of the tetrahedra.

The solution tahis problem is to definer,(x) correctly
as 1-exp(stl). This requires a linear interpolationtbe
guantitytl, andthenan exponential per pixel, which is
not commonlyavailablein hardware. Instead,we have
used a texture map table on our SGI Anyystem. For
the caseof constantt per tetrahedronasin our flow
volumeapplication,we put the quantity exp(-u) in a
one dimensionaltexture table, indexetly u [2]. The
texture coordinate was set to zero at thain vertices
of eachtriangle,andto 1l at the thick vertexandwas
interpolatedby the shadinghardware peforebeing used
as an address to the texture table.

If T varies linearly within each tetrahedron the product
1l varies quadratically inside eathangle. Quadratic
interpolationof texture coordinates was implemenied
hardwareon the Apollo DN10000VS [3], but was not
available on our Onyx. Thereforewe used a 2-D
texture table, with coordinates and I, and put
1-exp(=Ttl) in the table.

Now consider the case when the color also varies
linearly across théetrahedron. The Shirley-Tuchman
approximation (C,+C,)/2 for the colorof the thick
vertex is not precise; it weighs the two colors equally.
The frontmost color should hageeatemweight,because
the opacity along the ray segment hides trear color
more thanthe front one. Williamsand Max [4] have
foundan exact formula for the coldn this case, which
they implement with the aidf table lookups.However,
the supplementargrithmeticrequired goes fabeyond
what ispracticalin hardwarecomputation at each pixel.
As a compromiseye have used the exact analytic form
of the color of the thick vertex,and then used the
hardwareto interpolate the color across eatlangle.
The colorsof the thin vertices come from theriginal
color specification,and the opacity is determined,as
above,from a texture table.This compromise carbe
implemented entirelyin hardware,and gives a fairly
smooth colowariationthat seems tanoveappropriately
when a colored volume density rotates.

Figures 7(a), (b), (dnd(e) all use texturenappingfor
the opacity. Figures 7(aand (b) show atriangular
prism divided into three tetrahedr&igure 7(a) uses the
average color (GC))/2 at the thick vertices, while
Figure 7(b) uses the more accurate cahegrationof
Williams and Max [4]. Notethat in Figure 7(b) the
color of the yellow-orangevertexclosesto the viewer is
more prominent,as it should be. Figure 7(c) shows a
2x2x2 arrayof cubes, each divided intiive tetrahedra,
andrenderedby linearly interpolated opacitiesNotice
the Mach Bands predictesh Figure 2. Figure 7(d)
shows the same volume using the textma@ppingfor
more accurate opacities, and is much improved.

The Sorting Algorithm

Most volumerenderingalgorithmsuse pointsampling
methods to calculate the coland intensity. Because
the Shirley-Tuchman algorithm allows us to scan
convert entire polyhedravery quickly, we needed to
devise an efficient algorithm that would sort
unstructuredneshed elemenis a back to front order.
Our implementation will correctly sort arbitrarily shaped
convex elements in a back to front order as long as there
are nocycles or intersectionsin the data set. Each
polyhedron canthen be subdivided into a sebf
tetrahedra for rendering. dfconvexmesh is structured
sothatcells meet on common facesdthis topological
information is storedin an adjacencygraph, then the
adjacencygraphcan be used to produce a back-to-front
sort (see [10] or [11]).However,we wanted tohandle
unstructuredmeshes wherehis data is unavailable.
Such examples argliding interfaces, where cells meet
on only part of their faces, and non-conve&shes, such
as those with cavities. Figure 3 shows such featoras
meshof a piston inside a cylinder. We extended the
Newell, Newell and Sancha sort for polygons to
correctly handle convex polyhedra. The sort will not
perform subdivisionsin the case of intersecting
polyhedra orcycles,instead it will renderthemin an
arbitrary order.

" _//]

~_ sliding interfaces

TR

Figure 3.

This algorithmis a threedimensionalextensionof the
Newell, Newell and Sanchapainter'salgorithm [5-8]

andoperates on theolumesafter having performed all

of the perspectivéransformationoperations. Once the
elements have been sortedback-to-front order, they
can be fed to the volumrendererfor scan conversion
and compositing, using the techniques described above.

There are three stages to gmrtingprocess. The first
applies all viewingtransformationson the vertices to
obtain the screen coordinates with erspective
corrected Z. The second obtains a rosgkting of the
polyhedra based on the rearmost Z compowémach
element. Sincewe have applied the viewing
transformatiorto all verticesandhave scaled Z so as to
correct for perspectivewe would like to sort by
increasingZ (the eye looks down the Z axis towards
negative infinityin a right-handedcoordinatesystem).
In our implementation,this rough sort was obtained
through an O(nlogn) QuickSort. Thethird stage, or
"fine tuning" of the sort, is a bit more complicated.
However, like the painter's algorithm approaitls also
broken down into multiple steps with each one
increasingn computationatomplexity,in hopesthata
majority of the polyhedra will pass thearlierand less
expensive tests.

The goalof the finetuningis to find aseparatinglane
betweentwo polyhedra, Rand Q, in order to determine
whether or not P can be safely drawn before Q. The fine
tuningprocess is broken down infive stepsin order to
efficiently find this separatingplane. Given a list Hof
polyhedra roughly sortelly increasingZ coordinateof
the rearmost vertefcalled Zearmos), let polyhedron e
at the headf the list. P can beafely rendered if, for
all polyhedra Qin the list Hwhose Zrearmostis lessthan
(behind) P'sZirontmost, the following functionreturnsa
value of True:

Test_Polyhedra(P,Q)

if (P and Q do not have
overlapping X extents) return True
else if (P and Q do not have
overlapping Y extents)
return True
else if (P is behind a
back-plane of Q) return True
else if (Q is in front of a
front-plane of P) return True
else if
(Q!=Edgelntersection(P,Q))
return True
else return False

}

The functionEdgelntersection(P,Q) returnsthe
polyhedron which it determines to beback. It makes
this decisionby looking for intersectiondbetweenthe
edgesof P's projectiorand the edgeof Q's projection.
If one is found, it finds the Z componenf that

intersection point for Rand for Q, and returns the
polyhedrorwhose Zintersection is fartherfrom theeye. In
the casethat they are both equathen we continue
searchingfor intersections looking foran inequality
between the twintersection cOmponents.

If the above function returns False, then polyhedaadP
Q are considered to le the wrong ordeandQ should
be movedto the headf the listandthe tests shoulte
repeated with Q becoming the new P. Ipdssiblethat
the list H couldcontain a cycle. For instance, if
polyhedron AobscuresB, and B obscuresC, andC, in
turn, obscuresA, thenthere is no correcbrdering for
the polyhedra involved. Figureillustratesa cycle for
three polyhedra. The existencé a cycle is easily
determinedby taggingpolyhedron Q beforeinsertingit
at the headf the list after theTest Polyhedra()
function fails. If Q has already been tagg#ten a
cycle exists and it will need to be addressed.

Figure 4.

If polyhedron P passes the tests for all polyhedra Q
whereQrearmost is lessthan Prrontmost, then polyhedron P

is free to baenderedthe tests have determingdat P

will not obscureany polyhedra which are considered to
bein front of it. P isthenshipped to theendererand

the next polyhedron in the list is chosen for the new P.

The first two tests check the boundibgxesof the two
polyhedrain the XandY plane. Themainthrustof the
third and fourth tests is to find aseparatingplane
betweenP and Q. If such a plane existshen P can
safely be considered to lie behind Q. To simplify the
third and fourth testswe can mark each faceof every
polyhedron as beingither a front-facing polygon (it
facesthe eye)or a back-facing polygonThis is easily
determinedbecausethe algorithm stores an outward
pointing normal for each face. Therefore, a simple
query as to the sigwf the Z componenbf a face's
normalis enough to determine whether the face is front
facing or not. A positive Z,in a right-handed
coordinate system, is front facing. Otherwise it is back-
facing. This pre-processing is all performed while
reading in the meshed topology.

The third testthen simplifies to testing whether aif
P's vertices lie behind a plane defirgdany oneof Q's
back-facing polygons. If this is truthenthe face under
consideration forms separatingplanebetweerP andQ
and thereforewe can concludethat P is behind Q.
Performingthis test is amatterof making surethat for
at least one back-facingolygon of Q, the sign of
f(x;,y,,2) for all verticeg in P is non-negative for
that particular facef Q. The plane equatiofi,is based
on the outwargointing normalsfor thatface. If this
test fails,thenthe algorithmwill proceed to the fourth
testandtry to determine whether the plaspecifiedby
a front-facingpolygonbelonging to P separates P from

Q.

This fourth test isvery similar to the third test. In
determiningwhether Q lies entirelyn front of P, one
must make sure that for at least one front-fagiolggon
of P, f(x;,¥,%) s positive for all verticeg in
polyhedron Q. Thistime, f is the plane equation for a

front-facing polygon of P, again based on outward
pointing normals. If thisest passeshenQ lies entirely
in front of at least onef the front-facingpolygonsof P
and it can be concluded that P lies behind Q.

The fifth test,Edgelntersection() , returnseither
the indexof the polyhedra which ig back, oran error
condition if it cannot detect angtersectingedges. The
two cases wherthis test can fail are showin Figure 5.
As we will see,this does not jeopardize the correctness
of our algorithm.

P

PN Q.

P

(@) (b)
Figure 5.

The illustrations (a) and (b) in Figure 5, which both
represent screen projections, both fail the
Edgelntersection() function because neither
have intersectingedgesin their projections. However,

in case (a) the orden which the twotetrahedraare
rendered makes no difference since theycarapletely
disjoint in the screen projectioand thereforean error
condition can correctly be treated as if polyhedron P
werein front of polyhedron Q. On the othéand,this

is not necessarily the situatiom case (b). We can rest
assuredthat this will never cause asorting glitch
becausethe front faceof the brick (assuming the
tetrahedronis in front of the brick) is a front-facing
separatingplane and would have been caughh the
fourth test. This fifth test is a more efficient alternative
to thelinear programmingmethod proposety Newell
[6]. If the fifth test fails,then polygon Q shouldbe
movedto the frontof the list and the wholeprocess
should be repeated.

With the exceptiorof the fifth, these tests arery easy
to perform. Wherreadingin the topological data-set,
one must store the plane equatiooefficients, with
respect to an outwangbintingnormal,in the polyhedral
database. From these pre-computedefficients,
determiningwhich sideof a face a poing lies is as
simple as finding the sign afx; + by + cz+ d

In the casehatall of the tests faiandwe have acycle,
the program will render first whichever of P aQchas a
Ziontmostfurther from the eye.

Non-planar Faces

The algorithm described works correctly foconvex
polyhedra with planar faces and no cycles or
intersections. Unfortunately, it is quite possibie,
finite element codes, for théacesto skew slightly
yielding non-planaifaces. Fortunately, thiaceswill be
mostly planarbecauseénighly non-planarfacescan lead
to instabilities in the modelingode. Figure 6 illustrates
an exaggeratiorof what couldpossiblyhappen. Even if
the face were mildlynon-planar,it is still enough to
cause the tests to fail. To accommodate slightly non-
planar faces, we have introduced an error tolerénce

In order to sorconvexpolyhedra withnon-planarfaces
as shownin Figure 4, thealgorithmfirst calculatesan

average outwargointing normal,(a,b,c), for each face.
This is done using Newell's method as follows [8,9]:

a=>y(y-y)z+7
; A 4

b=2(4—4)(x+ X
=1

C=Z(>s->s)(y+y)
1=1

where:j=(i+1) modn
andn is the number of vertices per polygon

The lastcoefficient of the plane equationg, canbe

calculatedby picking some point on the average plane.

We chose the centef gravity of the face forthis point
as follows:

150505

1=1 1=1 1=1

To determine on which sidef a plane a point liesan
error tolerance is used.This is neededbecausewith
non-planarfacesthe algorithm could returnvertexa of
polyhedron Q as being contained insidke P, which
would ultimately result in &ycle (see Figure 6).Thisis
not the case. In fact, if vertexwere actually touching a
planeof polyhedron Pmachineround-offmight placea

on the wrong side of that face which, again, woekllt

in acycle. Therefore a toleranc®, is used to represent
anacceptable distance from a vertex to a faceother
words, thethird and fourth tests should consider vertex
a to be on the outsidef a face (the plane equation
evaluated at poira should yield a non-negative value) if
point a is within & units away from the plane under
consideration, regardless$ which sideof the face point
a actually lies. We camationalizethe existencef this

o tolerance adollows: if a cornerof polyhedron Q
happens to intersect a planar fac@aliyhedron Ry the
amountd, for a suitably smald, the visual impact will
be minimal, if perceptible atall. Our implementation
uses a uniqué for each face, based on the maximum
deviationof a vertex from its corresponding average
plane.

\h
/

\v

eye

Figure 6.

Discussion

Thefine-tuningsort describedunsin O(rf)with respect
to the numberof polyhedra sorted. However, this
guadraticrunning time is an upper boundand would
only be foundin the most pathological cases where all
polyhedra have overlapping Z extents. The average
running times for normal data sets should be lower.
While the first and second tests in constant time, the
third andfourth testsrunin O(F; Ej) and O(gF;) time
whereE; andE; correspond to the numbef edlges for
polyhedrai andj, respectively,and Fj and F; are the
numberof faces. The fifth testunsin O(EiE-ﬂ Again,
this is a worst caseunning time and it should be
substantially betterin practice since the function
terminates once a suitable intersectiom the two
projections is found.

The algorithm was implementedn C++ and has been
used to sort those primitives foundthe SGI Explorer
pyramid type. The volume primitives are sllbclasses
of a generalprimitive C++ class. Thessubclasseare
asfollows: the tetrahedrapyramid, prism, wedgeand
brick. We can easily extend thgystemto include
others.

Table 1 shows sontéming data using the complete sort
on an SGI Indiged. As contrast,the QuickSort can
sort 24,000 elementsn 4 seconds,and 157,000
elements in 27 seconds.

Complete Sor t

150 Y
100
seconds
50
([
- 1)
0 5000 10000 15000 20000 25000
elements
Table 1.

Figure 7(e)illustratesthe resultsof the sort, with the
Williams and Max color integration, on the "blunt fin".

We present no new approachescyale breaking. If a
cycleis detectedluringthe sorting,thenthe polyhedron
with the vertex farthest from theyewould beremoved
from the list and renderedlThe most common forrof a
cycle the algorithm would detectin a data setwould
probably be two non-planar faced polyhedra

"intersecting"each other. However,the & overlapping
tolerance shouléliminatemostof thesesituations. The
traditional,but slower method for removirgycles,such

as the type illustrated iRigure 4, would be to pass one
or more cutting planes through the offending polyhedra.

Conclusion

This paper presents extensions to tBéirley-Tuchman
algorithm for compositing colored elements with
hardware assisted texturemapping. We have also
presented extensions to the Newell, Newagild Sancha
sort for use with unstructured data. For quick
interaction or still frames, QuickSorting alone is
adequate. For a finahnimation, the full sort is
necessarpecauseopping will becomeapparentf the
rendering order suddenly becomes incorrect.

Acknowledgments

We would like tothankRoger Crawfis for albf his help
and suggestions. We would also like tbank the
people at SilicorGraphicsfor their adviceand help in
creating our Explorer modules.

This work was performed under the auspices of the U. S.

Departmenbf Energyby Lawrence Livermore National
Laboratory under contract No. W-7405-ENG-48.

References

[1] Shirley, P. and A. Tuchman, "A Polygonal
Approach to Direct Scalar Volume Rendering",
Computer GraphicsyYol. 24, No. 5(November
1990), pp 63-70.

[2] Max, N, B. Becker,and R. Crawfis, "Flow
Volumes for Interactive Vector Field
Visualization", Proceedings of Visualization '93
(October 1993), pp. 19-25.

[3] Kirk, D. and D. Voorhies, "The Rendering
Architecture of the DN10000VS", Computer
Graphics Vol. 24, No. 4, (August 1990), pp 299-
307.

(4]

(5]

(6]

(7]

(8]

E)

(10]

(11]

Williams, P. and N. Max, "A Volume Density
Optical Model", 1992 Workshop on Volume
Visualization ~ Association for Computing
Machinery, New York (1992) pp. 61-68.

Newell, M. E., R. G. Newell,and T. L. Sancha,
"A Solution to the Hidden Surface Problem."
Proceedings of the ACM National Conference
1972 pp. 443-450.

Newell, M. E. "The Ultilization of Procedure
Modelsin Digital Image Synthesis'Rh.D.Thesis,
University of Utah, 1974 (UTEC-CSc-76-218 and
NTIS AD/A 039 008/LL).

Foley, J., A. van Dam, S. Feiner, J. Hughes,
Computer Graphics Principles and Practice, 2nd
Edition, Addison-WesleyReading, Massachusetts,
1990.

Rogers, David F., Procedural Elements for
Computer Graphics,McGraw-Hill, New York.
1985.

Sutherland,l. E., R. F. Sproull,and R. A.
Schumaker,"A Characterizatiorof Ten Hidden-
SurfaceAlgorithms", Computing Surveysvol. 6,
1974, pp. 1-55.

Max, N., P.HanrahanandR. Crawfis, "Area and
Volume Coherence for Efficient¥isualization of
3-D Scalar Functions"Computer GraphigsVol.
24, No. 5 (November 1990), pp. 27-33.

Williams, P. "Visibility Ordering of Meshed
Polyhedra", ACM Transactions on Graphic¥ol.
11, No. 2, (April 1992), pp.103-126.

7a. Integration using Average color. 7b. Williams’ color integration.

-

7c. No texture mapping. 7d. With texture mapping.

7e. Blunt fin with 440 sorted brick elements, using texture mapping.

